On prescribed characteristic polynomials
dc.contributor.author | Danchev, Peter | |
dc.contributor.author | García, Esther | |
dc.contributor.author | Gómez Lozano, Miguel | |
dc.date.accessioned | 2024-09-23T10:54:12Z | |
dc.date.available | 2024-09-23T10:54:12Z | |
dc.date.issued | 2024-12 | |
dc.description.abstract | Let F be a field. We show that given any nth degree monic polynomial q(x) ∈F[x] and any matrix A ∈Mn(F)whose trace coincides with the trace of q(x) and consisting in its main diagonal of k0-blocks of order one, with k<n −k, and an invertible non-derogatory block of order n −k, we can construct a square-zero matrix Nsuch that the characteristic polynomial of A +Nis exactly q(x). We also show that the restriction k<n −kis necessary in the sense that, when the equality k=n −kholds, not every characteristic polynomial having the same trace as Acan be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion | es |
dc.identifier.citation | Peter Danchev, Esther García, Miguel Gómez Lozano, On prescribed characteristic polynomials, Linear Algebra and its Applications, Volume 702, 2024, Pages 1-18, ISSN 0024-3795, https://doi.org/10.1016/j.laa.2024.08.010 | es |
dc.identifier.doi | 10.1016/j.laa.2024.08.010 | es |
dc.identifier.issn | 0024-3795 (print) | |
dc.identifier.issn | 1873-1856 (online) | |
dc.identifier.uri | https://hdl.handle.net/10115/39738 | |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Characteristic polynomial | es |
dc.subject | Square-zero matrix | es |
dc.title | On prescribed characteristic polynomials | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1-s2.0-S0024379524003318-main.pdf
- Tamaño:
- 341.09 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: