On prescribed characteristic polynomials

dc.contributor.authorDanchev, Peter
dc.contributor.authorGarcía, Esther
dc.contributor.authorGómez Lozano, Miguel
dc.date.accessioned2024-09-23T10:54:12Z
dc.date.available2024-09-23T10:54:12Z
dc.date.issued2024-12
dc.description.abstractLet F be a field. We show that given any nth degree monic polynomial q(x) ∈F[x] and any matrix A ∈Mn(F)whose trace coincides with the trace of q(x) and consisting in its main diagonal of k0-blocks of order one, with k<n −k, and an invertible non-derogatory block of order n −k, we can construct a square-zero matrix Nsuch that the characteristic polynomial of A +Nis exactly q(x). We also show that the restriction k<n −kis necessary in the sense that, when the equality k=n −kholds, not every characteristic polynomial having the same trace as Acan be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsiones
dc.identifier.citationPeter Danchev, Esther García, Miguel Gómez Lozano, On prescribed characteristic polynomials, Linear Algebra and its Applications, Volume 702, 2024, Pages 1-18, ISSN 0024-3795, https://doi.org/10.1016/j.laa.2024.08.010es
dc.identifier.doi10.1016/j.laa.2024.08.010es
dc.identifier.issn0024-3795 (print)
dc.identifier.issn1873-1856 (online)
dc.identifier.urihttps://hdl.handle.net/10115/39738
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCharacteristic polynomiales
dc.subjectSquare-zero matrixes
dc.titleOn prescribed characteristic polynomialses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S0024379524003318-main.pdf
Tamaño:
341.09 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: