Modelling Sparse Saliency Maps on Manifolds: Numerical Results and Applications.

dc.contributor.authorAlcaín, Eduardo
dc.contributor.authorMuñoz Montalvo, Ana Isabel
dc.contributor.authorRamírez, Iván
dc.contributor.authorSchiavi, Emanuele
dc.date.accessioned2023-12-14T09:38:33Z
dc.date.available2023-12-14T09:38:33Z
dc.date.issued2023-12
dc.description.abstractSaliency detection is an image processing task which aims at automatically estimating visually salient object regions in a digital image mimicking human visual attention and eyes fixation. A number of different computational approaches for visual saliency estimation has recently appeared in Computer and Artificial Vision. Relevant and new applications can be found everywhere varying from automatic image segmentation and understanding, localization and quantification for biomedical and aerial images to fast video tracking and surveillance. In this contribution, we present a new variational model on finite dimensional manifolds generated by some characteristic features of the data. A Primal-Dual method is implemented for the numerical resolution showing promising preliminary results.es
dc.identifier.citationSEMA SIMAI, Springer Series, book series, Recent Advances in Differential Equations and Applications, Vol 18, pp 157-175, 2019es
dc.identifier.doi10.1007/978-3-030-00341-8_10es
dc.identifier.issn2199-3041
dc.identifier.urihttps://hdl.handle.net/10115/27262
dc.language.isospaes
dc.publisherSpringer Nature Switzerlandes
dc.rightsAtribución-CompartirIgual 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectSaliency detection and segmentation, superpixeles, non local total variation on graphs, energy minimization, primal-dual algorithmes
dc.titleModelling Sparse Saliency Maps on Manifolds: Numerical Results and Applications.es
dc.typeinfo:eu-repo/semantics/bookPartes

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
modellingsparse.pdf
Tamaño:
667.44 KB
Formato:
Adobe Portable Document Format
Descripción:
Articulo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: