Spatio-temporal climate regionalization using a self-organized clustering approach

dc.contributor.authorChidean, Mihaela I.
dc.contributor.authorCaamaño, Antonio
dc.contributor.authorCasanova, Carlos
dc.contributor.authorRamiro, Julio
dc.contributor.authorSalcedo-Sanz, Sancho
dc.date.accessioned2024-09-20T09:27:24Z
dc.date.available2024-09-20T09:27:24Z
dc.date.issued2020-02-13
dc.description.abstractThe authors present a novel self-organized climate regionalization (CR) method that obtains a spatial clustering of regions, based on the explained variance of physical measurements in their coverage. This method enables a microscopic characterization of the probabilistic spatial extent of climate regions, using the statistics of the obtained clusters. It also allows for the study of the macroscopic behaviour of climate regions through time by using the dissimilarity among different cluster size probability histograms. The main advantages of the presented method, based on the Second-Order Data-Coupled Clustering (SODCC) algorithm, are that SODCC is robust to the selection of tunable parameters and that it does not require a regular or homogeneous grid to be applied. Moreover, the SODCC method has higher spatial resolution, lower computational complexity, and allows for a more direct physical interpretation of the outputs than other existing CR methods, such as Empirical Orthogonal Function (EOF) or Rotated Empirical Orthogonal Function (REOF). These facts are illustrated with an example of winter wind speed regionalization in the Iberian Peninsula through the period (1979 − 2014). This study also reveals that the North Atlantic Oscillation (NAO) has a high influence over the wind distribution in the Iberian Peninsula in a subset of years in the considered period.es
dc.identifier.citationChidean, M.I., Caamaño, A.J., Casanova-Mateo, C. et al. Spatio-temporal climate regionalization using a self-organized clustering approach. Theor Appl Climatol 140, 927–949 (2020). https://doi.org/10.1007/s00704-019-03082-6es
dc.identifier.doi10.1007/s00704-019-03082-6es
dc.identifier.issn0177-798X
dc.identifier.urihttps://hdl.handle.net/10115/39669
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleSpatio-temporal climate regionalization using a self-organized clustering approaches
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
main.pdf
Tamaño:
66.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Versión final de autores, antes de formateo realizado por la revista

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: