Show simple item record

Understanding seismicity and seismotectonics in a stable continental region (NW Iberian Peninsula): Implications for the nature of intraplate seismicity

dc.contributor.authorMartín-González, Fidel
dc.contributor.authorCrespo-Martín, Cristina
dc.contributor.authorCesca, Simone
dc.contributor.authorGonzález-Muñoz, Sandra
dc.date.accessioned2023-10-13T07:51:18Z
dc.date.available2023-10-13T07:51:18Z
dc.date.issued2023
dc.identifier.citationFidel Martín-González, Cristina Crespo-Martín, Simone Cesca, Sandra González-Muñoz, Understanding seismicity and seismotectonics in a stable continental region (NW Iberian Peninsula): Implications for the nature of intraplate seismicity, Global and Planetary Change, Volume 227, 2023, 104177, ISSN 0921-8181, https://doi.org/10.1016/j.gloplacha.2023.104177es
dc.identifier.issn0921-8181
dc.identifier.urihttps://hdl.handle.net/10115/24857
dc.descriptionThis work was supported by the Spanish Ministry of Economy and Competitiveness and FEDER Funds of the European Union [project CGL2015-70970-P], the Community of Madrid and Funds of European Union [grant award by PEJD-2017-PRE/AMB-3472] and the predoctoral contract [PREDOC20-073] of the Rey Juan Carlos University. The authors wish to thank two anonymous reviewers and the editor Dr. Matenco for their comments and suggestions that have contributed to the improvement of the final version of the manuscript.es
dc.description.abstractDespite that earthquakes in stable continental regions (SCR) often cause more damage than interplate seismicity, they remain poorly understood. This is mainly because of the lower rate of intraplate seismicity and because of its different behaviour compared to the better-known seismicity at the plate boundary. Understand the characteristics of the intraplate seismicity is a challenge for the seismic risk studies. We study and characterise an SCR (NW Iberian Peninsula), which not only registers moderate instrumental intraplate seismicity, but also important historic seismicity and paleoseismic activity. To tackle some of the difficulties posed by intraplate seismicity, we analyse a wide and multidisciplinary data set (e.g., geological structures, seismicity, focal mechanisms, and geophysical data). Seismicity in this region is not associated with an old rift, but with inherited faults widely distributed throughout the region with a great variety of orientations. The reactivation kinematics of these faults are coherent with the current regional stresses. Instrumental seismicity is not associated with the large active faults nor with crustal limits. Seismicity is mainly clustered in swarms and sequences. Although seismic swarms present lower magnitudes, they are the most common. Based on swarms’ characteristics (high b-values, upward spatiotemporal migration), reported mantellic CO2 in some thermal springs, and the reactivation of inherited steeply-dipping faults, we propose the migration of deep fluids through steeply-dipping fractured areas as the cause of the intraplate seismicity. These processes could increase the pore pressure and decrease the stresses necessary for the fault rupture in a fault-valve behaviour. In general, in intraplate context, the important control in the seismicity of the inherited fault systems favourable oriented under the current stress tensor is observed, and also the need for mechanisms that can decrease the effective stress for the fault ruptures. Mechanisms as hydrothermal fluids in arterial faults with fault-valve processes has been identified as an effective driver of intraplate seismicity, playing an important role in stability of tectonic faults. The large number and variety of these faults, that share the low strain rates in intraplate polyorogenic context, may explain the different characteristics of these intraplate regions compared with the interplate regions, as the “unanticipated” behaviour, variety of kinematics, the long quiescence periods without seismicity associated and erosion obliterating their morphotectonic expression.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIntraplate seismicityes
dc.subjectSeismotectonicses
dc.subjectSCRes
dc.subjectFault-valvees
dc.subjectInherited faultses
dc.titleUnderstanding seismicity and seismotectonics in a stable continental region (NW Iberian Peninsula): Implications for the nature of intraplate seismicityes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.gloplacha.2023.104177es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional