Show simple item record

Contrasting catastrophic eruptions predicted by different intrusion and collapse scenarios

dc.contributor.authorRincón, Marta
dc.contributor.authorMárquez, Álvaro
dc.contributor.authorHerrera, Raquel
dc.contributor.authorAlonso-Torres, Ana
dc.contributor.authorGranja-Bruña, Jose Luis
dc.contributor.authorvan Wyk de Vries, Ben
dc.date.accessioned2024-01-30T09:28:39Z
dc.date.available2024-01-30T09:28:39Z
dc.date.issued2018-04-18
dc.identifier.citationRincón, M., Márquez, A., Herrera, R., Alonso-Torres, A., Granja-Bruña, J. L., & van Wyk de Vries, B. (2018). Contrasting catastrophic eruptions predicted by different intrusion and collapse scenarios. Scientific reports, 8(1), 6178.es
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10115/29190
dc.description.abstractCatastrophic volcanic eruptions triggered by landslide collapses can jet upwards or blast sideways. Magma intrusion is related to both landslide-triggered eruptive scenarios (lateral or vertical), but it is not clear how such different responses are produced, nor if any precursor can be used for forecasting them. We approach this problem with physical analogue modelling enhanced with X-ray Multiple Detector Computed Tomography scanning, used to track evolution of internal intrusion, and its related faulting and surface deformation. We find that intrusions produce three different volcano deformation patterns, one of them involving asymmetric intrusion and deformation, with the early development of a listric slump fault producing pronounced slippage of one sector. This previously undescribed early deep potential slip surface provides a unified explanation for the two different eruptive scenarios (lateral vs. vertical). Lateral blast only occurs in flank collapse when the intrusion has risen into the sliding block. Otherwise, vertical rather than lateral expansion of magma is promoted by summit dilatation and flank buttressing. The distinctive surface deformation evolution detected opens the possibility to forecast the possible eruptive scenarios: laterally directed blast should only be expected when surface deformation begins to develop oblique to the first major fault.es
dc.language.isoenges
dc.publisherNaturees
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAnalogue models, intrusión, stratovolcanoes unstabilityes
dc.titleContrasting catastrophic eruptions predicted by different intrusion and collapse scenarioses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1038/s41598-018-24623-5es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International