Adapting support vector optimisation algorithms to textual gender classification
Archivos
Fecha
2024-04-13
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
In this paper, we focus on the problem of determining the gender of the person described in a biographical text. Since support vector machine classifiers are well suited for text classification tasks, we present a new stopping criterion for support vector optimisation algorithms tailored to this problem. This new approach exploits the geometric properties of the vector representation of such content. An experiment on a set of English and Spanish biographical articles retrieved from Wikipedia illustrates this approach and compares it to other machine learning classification algorithms. The proposed method allows real-time classification algorithm training. Moreover, these results confirm the advantage of leveraging additional gender information in strongly inflected languages, like Spanish, for this task
Descripción
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
Palabras clave
Citación
Gomez, J., Alfaro, C., Ortega, F. et al. Adapting support vector optimisation algorithms to textual gender classification. TOP (2024). https://doi.org/10.1007/s11750-024-00671-1
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional