Adapting support vector optimisation algorithms to textual gender classification

dc.contributor.authorGómez, Javier
dc.contributor.authorAlfaro, Cesar
dc.contributor.authorOrtega, Felipe
dc.contributor.authorMoguerza, Javier M.
dc.contributor.authorAlgar, Maria Jesus
dc.contributor.authorMoreno, Raul
dc.date.accessioned2024-06-26T09:29:49Z
dc.date.available2024-06-26T09:29:49Z
dc.date.issued2024-04-13
dc.descriptionOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Naturees
dc.description.abstractIn this paper, we focus on the problem of determining the gender of the person described in a biographical text. Since support vector machine classifiers are well suited for text classification tasks, we present a new stopping criterion for support vector optimisation algorithms tailored to this problem. This new approach exploits the geometric properties of the vector representation of such content. An experiment on a set of English and Spanish biographical articles retrieved from Wikipedia illustrates this approach and compares it to other machine learning classification algorithms. The proposed method allows real-time classification algorithm training. Moreover, these results confirm the advantage of leveraging additional gender information in strongly inflected languages, like Spanish, for this taskes
dc.identifier.citationGomez, J., Alfaro, C., Ortega, F. et al. Adapting support vector optimisation algorithms to textual gender classification. TOP (2024). https://doi.org/10.1007/s11750-024-00671-1es
dc.identifier.doi10.1007/s11750-024-00671-1es
dc.identifier.issn1863-8279 (online)
dc.identifier.issn1134-5764 (print)
dc.identifier.urihttps://hdl.handle.net/10115/35140
dc.language.isoenges
dc.publisherSpringeres
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSupport vector machines
dc.subjectMachine learning
dc.subjectNonlinear optimisation
dc.subjectText mining
dc.subjectGender identification
dc.titleAdapting support vector optimisation algorithms to textual gender classificationes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s11750-024-00671-1.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: