Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
Archivos
Fecha
2023-10-07
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Enlace externo
Resumen
Circular data are extremely important in many different contexts of natural and social science, from forestry to sociology, among many others. Since the usual inference procedures based on the maximum likelihood principle are known to be extremely non-robust in the presence of possible data contamination, in this paper, we develop robust estimators for the general class of multinomial circular logistic regression models involving multiple circular covariates. Particularly, we extend the popular density-power-divergence-based estimation approach for this particular set-up and study the asymptotic properties of the resulting estimators. The robustness of the proposed estimators is illustrated through extensive simulation studies and few important real data examples from forest science and meteorology
Descripción
Palabras clave
Citación
Castilla, E., & Ghosh, A. (2023). Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model. Entropy, 25(10), 1422. https://doi.org/10.3390/e25101422
Colecciones

Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International