Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model

dc.contributor.authorCastilla, Elena
dc.contributor.authorGhosh, Abhik
dc.date.accessioned2025-03-25T11:00:29Z
dc.date.available2025-03-25T11:00:29Z
dc.date.issued2023-10-07
dc.description.abstractCircular data are extremely important in many different contexts of natural and social science, from forestry to sociology, among many others. Since the usual inference procedures based on the maximum likelihood principle are known to be extremely non-robust in the presence of possible data contamination, in this paper, we develop robust estimators for the general class of multinomial circular logistic regression models involving multiple circular covariates. Particularly, we extend the popular density-power-divergence-based estimation approach for this particular set-up and study the asymptotic properties of the resulting estimators. The robustness of the proposed estimators is illustrated through extensive simulation studies and few important real data examples from forest science and meteorology
dc.identifier.citationCastilla, E., & Ghosh, A. (2023). Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model. Entropy, 25(10), 1422. https://doi.org/10.3390/e25101422
dc.identifier.doihttps://doi.org/10.3390/e25101422
dc.identifier.issn1099-4300
dc.identifier.urihttps://hdl.handle.net/10115/81137
dc.language.isoen_US
dc.publisherMDPI
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectcircular regression
dc.subjectrobust estimation
dc.subjectdensity power divergence
dc.titleRobust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
entropy-25-01422.pdf
Tamaño:
466.54 KB
Formato:
Adobe Portable Document Format