Robust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Images
Archivos
Fecha
2006-07-01
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
This letter introduces the -Huber loss function in the support vector regression (SVR) formulation for the estimation
of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained
in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical
bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved
robust estimation results on the considered case study, especially significant when few in situ measurements are available.
Descripción
Palabras clave
Citación
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España