Robust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Images

dc.contributor.authorCamps Valls, Gustavo
dc.contributor.authorBruzzone, Lorenzo
dc.contributor.authorRojo-Álvarez, José Luis
dc.contributor.authorMelgani, Farid
dc.date.accessioned2009-02-04T15:27:29Z
dc.date.available2009-02-04T15:27:29Z
dc.date.issued2006-07-01
dc.description.abstractThis letter introduces the -Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved robust estimation results on the considered case study, especially significant when few in situ measurements are available.es
dc.description.departamentoTeoría de la Señal y Comunicaciones
dc.identifier.issn1545-598X
dc.identifier.urihttp://hdl.handle.net/10115/1907
dc.language.isoenes
dc.relation.ispartofseriesIEEE Geoscience and Remote Sensing Letterses
dc.relation.ispartofseries3(3)es
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectTelecomunicacioneses
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco2406 Biofísicaes
dc.titleRobust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Imageses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
GEOSCIENCE.pdf
Tamaño:
286.89 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.15 KB
Formato:
Item-specific license agreed upon to submission
Descripción: