Nonlinear System Identification with Composite Relevance Vector Machines
Fecha
2007-01-01
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing
standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection.
Descripción
Palabras clave
Citación
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España