Nonlinear System Identification with Composite Relevance Vector Machines

dc.contributor.authorCamps Valls, Gustavo
dc.contributor.authorMartínez Ramón, Manel
dc.contributor.authorRojo-Álvarez, José Luis
dc.contributor.authorMuñoz Marí, Jordi
dc.date.accessioned2009-02-04T15:39:57Z
dc.date.available2009-02-04T15:39:57Z
dc.date.issued2007-01-01
dc.description.abstractNonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection.es
dc.description.departamentoTeoría de la Señal y Comunicaciones
dc.identifier.issn1070-9908
dc.identifier.urihttp://hdl.handle.net/10115/1910
dc.language.isoenes
dc.relation.ispartofseriesIEEE Signal Processing Letterses
dc.relation.ispartofseries14(4)es
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectTelecomunicacioneses
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.titleNonlinear System Identification with Composite Relevance Vector Machineses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Nonlinear system_identification2007.pdf
Tamaño:
175.86 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.15 KB
Formato:
Item-specific license agreed upon to submission
Descripción: