A Universal Learning Rule that Minimizes Well-formed Cost Functions

Fecha

2009-07-29T13:59:17Z

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

In this paper, we analyze stochastic gradient learning rules for posterior probability estimation using networks with a single layer of weights and a general nonlinear activation function. We provide necessary and sufficient conditions on the learning rules and the activation function to obtain probability estimates. Also, we extend the concept of well-formed cost function, proposed by Wittner and Denker, to multiclass problems, and we provide theoretical results showing the advantages of this kind of objective functions.

Descripción

Palabras clave

Citación

license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España