A Universal Learning Rule that Minimizes Well-formed Cost Functions
Fecha
2009-07-29T13:59:17Z
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
In this paper, we analyze stochastic gradient learning rules for posterior probability estimation using networks with a
single layer of weights and a general nonlinear activation function. We provide necessary and sufficient conditions on the learning rules and the activation function to obtain probability estimates. Also, we extend the concept of well-formed cost function, proposed by Wittner and Denker, to multiclass problems, and we provide
theoretical results showing the advantages of this kind of objective functions.
Descripción
Palabras clave
Citación
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España