A Universal Learning Rule that Minimizes Well-formed Cost Functions

dc.contributor.authorMora Jiménez, Inma
dc.contributor.authorCid Sueiro, Jesús
dc.date.accessioned2009-07-29T13:59:17Z
dc.date.available2009-07-29T13:59:17Z
dc.date.issued2009-07-29T13:59:17Z
dc.description.abstractIn this paper, we analyze stochastic gradient learning rules for posterior probability estimation using networks with a single layer of weights and a general nonlinear activation function. We provide necessary and sufficient conditions on the learning rules and the activation function to obtain probability estimates. Also, we extend the concept of well-formed cost function, proposed by Wittner and Denker, to multiclass problems, and we provide theoretical results showing the advantages of this kind of objective functions.es
dc.description.departamentoTeoría de la Señal y Comunicaciones
dc.identifier.issn1045-9227
dc.identifier.urihttp://hdl.handle.net/10115/2589
dc.language.isoenes
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectTelecomunicacioneses
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco5801 Teoría y Métodos Educativoses
dc.titleA Universal Learning Rule that Minimizes Well-formed Cost Functionses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
A Universal Learning Rule That Minimizes.pdf
Tamaño:
372.14 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.1 KB
Formato:
Item-specific license agreed upon to submission
Descripción: