Model uncertainty quantification in Cox regression

Resumen

WeconsidercovariateselectionandtheensuingmodeluncertaintyaspectsinthecontextofCoxregression.Theperspectivewetakeisprobabilistic,andwehandleit within a Bayesian framework. One of the critical elements in variable/modelselection is choosing a suitable prior for model parameters. Here, we derive theso-called conventional prior approach and propose a comprehensive implemen-tation that results in an automatic procedure. Our simulation studies and realapplications show improvements over existing literature. For the sake of repro-ducibility but also for its intrinsic interest for practitioners, a web applicationrequiring minimum statistical knowledge implements the proposed approach.

Descripción

Ministerio de Ciencia e Innovación. Grant Number: Grant PID2019-104790GB-I00 funded by MCIN/AEI

Citación

García-Donato, G., Cabras, S. & Castellanos, M.E. (2023) Model uncertainty quantification in Cox regression. Biometrics, 79, 1726–1736. https://doi.org/10.1111/biom.13823
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional