Model uncertainty quantification in Cox regression

dc.contributor.authorGarcía-Donato, Gonzalo
dc.contributor.authorCabras, Stefano
dc.contributor.authorCastellanos, María Eugenia
dc.date.accessioned2023-09-27T14:16:28Z
dc.date.available2023-09-27T14:16:28Z
dc.date.issued2023
dc.descriptionMinisterio de Ciencia e Innovación. Grant Number: Grant PID2019-104790GB-I00 funded by MCIN/AEIes
dc.description.abstractWeconsidercovariateselectionandtheensuingmodeluncertaintyaspectsinthecontextofCoxregression.Theperspectivewetakeisprobabilistic,andwehandleit within a Bayesian framework. One of the critical elements in variable/modelselection is choosing a suitable prior for model parameters. Here, we derive theso-called conventional prior approach and propose a comprehensive implemen-tation that results in an automatic procedure. Our simulation studies and realapplications show improvements over existing literature. For the sake of repro-ducibility but also for its intrinsic interest for practitioners, a web applicationrequiring minimum statistical knowledge implements the proposed approach.es
dc.identifier.citationGarcía-Donato, G., Cabras, S. & Castellanos, M.E. (2023) Model uncertainty quantification in Cox regression. Biometrics, 79, 1726–1736. https://doi.org/10.1111/biom.13823es
dc.identifier.doi10.1111/biom.13823es
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/10115/24583
dc.language.isoenges
dc.publisherWileyes
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectBayesian variable selectiones
dc.subjectconventional priores
dc.subjectFisher informationes
dc.subjectmedian modeles
dc.subjectsurvival analysises
dc.titleModel uncertainty quantification in Cox regressiones
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Biometrics - 2023 - Garc a‐Donato.pdf
Tamaño:
441.99 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: