Period-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systems
Archivos
Fecha
2023
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Physical Society (APS)
Resumen
In this paper, we show that the destruction of the main Kolmogorov-Arnold-Moser (KAM) islands in two-degree-of-freedom Hamiltonian systems occurs through a cascade of period-doubling bifurcations. We calculate the corresponding Feigenbaum constant and the accumulation point of the period-doubling sequence. By means of a systematic grid search on exit basin diagrams, we find the existence of numerous very small KAM islands (“islets”) for values below and above the aforementioned accumulation point. We study the bifurcations involving the formation of islets and we classify them in three different types. Finally, we show that the same types of islets appear in generic two-degree-of-freedom Hamiltonian systems and in area-preserving maps.
Descripción
Palabras clave
Citación
Alexandre R. Nieto, Jesús M. Seoane, and Miguel A.F. Sanjuán. Period-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systems. Phys. Rev. E 107, 054215 (2023)
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como cop. AP´s