Period-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systems

dc.contributor.authorNieto, Alexandre R.
dc.contributor.authorSeoane, Jesús M.
dc.contributor.authorSanjuán, Miguel A.F.
dc.date.accessioned2024-03-22T12:42:13Z
dc.date.available2024-03-22T12:42:13Z
dc.date.issued2023
dc.description.abstractIn this paper, we show that the destruction of the main Kolmogorov-Arnold-Moser (KAM) islands in two-degree-of-freedom Hamiltonian systems occurs through a cascade of period-doubling bifurcations. We calculate the corresponding Feigenbaum constant and the accumulation point of the period-doubling sequence. By means of a systematic grid search on exit basin diagrams, we find the existence of numerous very small KAM islands (“islets”) for values below and above the aforementioned accumulation point. We study the bifurcations involving the formation of islets and we classify them in three different types. Finally, we show that the same types of islets appear in generic two-degree-of-freedom Hamiltonian systems and in area-preserving maps.es
dc.identifier.citationAlexandre R. Nieto, Jesús M. Seoane, and Miguel A.F. Sanjuán. Period-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systems. Phys. Rev. E 107, 054215 (2023)es
dc.identifier.doi10.1103/PhysRevE.107.054215es
dc.identifier.issn2470-0045
dc.identifier.urihttps://hdl.handle.net/10115/31566
dc.language.isoenges
dc.publisherAmerican Physical Society (APS)es
dc.rightscop. AP´s*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titlePeriod-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systemses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
8_2023_PhysRevE.pdf
Tamaño:
4.68 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: